Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Learning Instantiated Logical Rules from Knowledge Graphs (2003.06071v2)

Published 13 Mar 2020 in cs.AI, cs.CL, and cs.LG

Abstract: Efficiently inducing high-level interpretable regularities from knowledge graphs (KGs) is an essential yet challenging task that benefits many downstream applications. In this work, we present GPFL, a probabilistic rule learner optimized to mine instantiated first-order logic rules from KGs. Instantiated rules contain constants extracted from KGs. Compared to abstract rules that contain no constants, instantiated rules are capable of explaining and expressing concepts in more details. GPFL utilizes a novel two-stage rule generation mechanism that first generalizes extracted paths into templates that are acyclic abstract rules until a certain degree of template saturation is achieved, then specializes the generated templates into instantiated rules. Unlike existing works that ground every mined instantiated rule for evaluation, GPFL shares groundings between structurally similar rules for collective evaluation. Moreover, we reveal the presence of overfitting rules, their impact on the predictive performance, and the effectiveness of a simple validation method filtering out overfitting rules. Through extensive experiments on public benchmark datasets, we show that GPFL 1.) significantly reduces the runtime on evaluating instantiated rules; 2.) discovers much more quality instantiated rules than existing works; 3.) improves the predictive performance of learned rules by removing overfitting rules via validation; 4.) is competitive on knowledge graph completion task compared to state-of-the-art baselines.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.