Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A General Framework for Learning Mean-Field Games (2003.06069v3)

Published 13 Mar 2020 in cs.LG, math.OC, and stat.ML

Abstract: This paper presents a general mean-field game (GMFG) framework for simultaneous learning and decision-making in stochastic games with a large population. It first establishes the existence of a unique Nash Equilibrium to this GMFG, and demonstrates that naively combining reinforcement learning with the fixed-point approach in classical MFGs yields unstable algorithms. It then proposes value-based and policy-based reinforcement learning algorithms (GMF-V and GMF-P, respectively) with smoothed policies, with analysis of their convergence properties and computational complexities. Experiments on an equilibrium product pricing problem demonstrate that GMF-V-Q and GMF-P-TRPO, two specific instantiations of GMF-V and GMF-P, respectively, with Q-learning and TRPO, are both efficient and robust in the GMFG setting. Moreover, their performance is superior in convergence speed, accuracy, and stability when compared with existing algorithms for multi-agent reinforcement learning in the $N$-player setting.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.