A General Framework for Learning Mean-Field Games (2003.06069v3)
Abstract: This paper presents a general mean-field game (GMFG) framework for simultaneous learning and decision-making in stochastic games with a large population. It first establishes the existence of a unique Nash Equilibrium to this GMFG, and demonstrates that naively combining reinforcement learning with the fixed-point approach in classical MFGs yields unstable algorithms. It then proposes value-based and policy-based reinforcement learning algorithms (GMF-V and GMF-P, respectively) with smoothed policies, with analysis of their convergence properties and computational complexities. Experiments on an equilibrium product pricing problem demonstrate that GMF-V-Q and GMF-P-TRPO, two specific instantiations of GMF-V and GMF-P, respectively, with Q-learning and TRPO, are both efficient and robust in the GMFG setting. Moreover, their performance is superior in convergence speed, accuracy, and stability when compared with existing algorithms for multi-agent reinforcement learning in the $N$-player setting.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.