Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Deep Learning to Design Pilot and Channel Estimator For Massive MIMO (2003.05875v1)

Published 12 Mar 2020 in cs.IT, cs.LG, eess.SP, and math.IT

Abstract: In this paper, we propose a data-driven deep learning (DL) approach to jointly design the pilot signals and channel estimator for wideband massive multiple-input multiple-output (MIMO) systems. By exploiting the angular-domain compressibility of massive MIMO channels, the conceived DL framework can reliably reconstruct the high-dimensional channels from the under-determined measurements. Specifically, we design an end-to-end deep neural network (DNN) architecture composed of dimensionality reduction network and reconstruction network to respectively mimic the pilot signals and channel estimator, which can be acquired by data-driven deep learning. For the dimensionality reduction network, we design a fully-connected layer by compressing the high-dimensional massive MIMO channel vector as input to low-dimensional received measurements, where the weights are regarded as the pilot signals. For the reconstruction network, we design a fully-connected layer followed by multiple cascaded convolutional layers, which will reconstruct the high-dimensional channel as the output. By defining the mean square error between input and output as loss function, we leverage Adam algorithm to train the end-to-end DNN aforementioned with extensive channel samples. In this way, both the pilot signals and channel estimator can be simultaneously obtained. The simulation results demonstrate that the superiority of the proposed solution over state-of-the-art compressive sensing approaches.

Citations (101)

Summary

We haven't generated a summary for this paper yet.