Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Intensity Scan Context: Coding Intensity and Geometry Relations for Loop Closure Detection (2003.05656v1)

Published 12 Mar 2020 in cs.RO and cs.CV

Abstract: Loop closure detection is an essential and challenging problem in simultaneous localization and mapping (SLAM). It is often tackled with light detection and ranging (LiDAR) sensor due to its view-point and illumination invariant properties. Existing works on 3D loop closure detection often leverage the matching of local or global geometrical-only descriptors, but without considering the intensity reading. In this paper we explore the intensity property from LiDAR scan and show that it can be effective for place recognition. Concretely, we propose a novel global descriptor, intensity scan context (ISC), that explores both geometry and intensity characteristics. To improve the efficiency for loop closure detection, an efficient two-stage hierarchical re-identification process is proposed, including a binary-operation based fast geometric relation retrieval and an intensity structure re-identification. Thorough experiments including both local experiment and public datasets test have been conducted to evaluate the performance of the proposed method. Our method achieves higher recall rate and recall precision than existing geometric-only methods.

Citations (186)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.