Papers
Topics
Authors
Recent
2000 character limit reached

Provably Efficient Model-Free Algorithm for MDPs with Peak Constraints (2003.05555v6)

Published 11 Mar 2020 in math.OC, cs.LG, cs.SY, eess.SY, and stat.ML

Abstract: In the optimization of dynamic systems, the variables typically have constraints. Such problems can be modeled as a Constrained Markov Decision Process (CMDP). This paper considers the peak Constrained Markov Decision Process (PCMDP), where the agent chooses the policy to maximize total reward in the finite horizon as well as satisfy constraints at each epoch with probability 1. We propose a model-free algorithm that converts PCMDP problem to an unconstrained problem and a Q-learning based approach is applied. We define the concept of probably approximately correct (PAC) to the proposed PCMDP problem. The proposed algorithm is proved to achieve an $(\epsilon,p)$-PAC policy when the episode $K\geq\Omega(\frac{I2H6SA\ell}{\epsilon2})$, where $S$ and $A$ are the number of states and actions, respectively. $H$ is the number of epochs per episode. $I$ is the number of constraint functions, and $\ell=\log(\frac{SAT}{p})$. We note that this is the first result on PAC kind of analysis for PCMDP with peak constraints, where the transition dynamics are not known apriori. We demonstrate the proposed algorithm on an energy harvesting problem and a single machine scheduling problem, where it performs close to the theoretical upper bound of the studied optimization problem.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.