Utilization Difference Based Partitioned Scheduling of Mixed-Criticality Systems (2003.05445v1)
Abstract: Mixed-Criticality (MC) systems consolidate multiple functionalities with different criticalities onto a single hardware platform. Such systems improve the overall resource utilization while guaranteeing resources to critical tasks. In this paper, we focus on the problem of partitioned multiprocessor MC scheduling, in particular the problem of designing efficient partitioning strategies. We develop two new partitioning strategies based on the principle of evenly distributing the difference between total high-critical utilization and total low-critical utilization for the critical tasks among all processors. By balancing this difference, we are able to reduce the pessimism in uniprocessor MC schedulability tests that are applied on each processor, thus improving overall schedulability. To evaluate the schedulability performance of the proposed strategies, we compare them against existing partitioned algorithms using extensive experiments. We show that the proposed strategies are effective with both dynamic-priority Earliest Deadline First with Virtual Deadlines (EDF-VD) and fixed-priority Adaptive Mixed-Criticality (AMC) algorithms. Specifically, our results show that the proposed strategies improve schedulability by as much as 28.1% and 36.2% for implicit and constrained-deadline task systems respectively.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.