Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Online Graph Matching Problems with a Worst-Case Reassignment Budget (2003.05175v1)

Published 11 Mar 2020 in cs.DS

Abstract: In the online bipartite matching with reassignments problem, an algorithm is initially given only one side of the vertex set of a bipartite graph; the vertices on the other side are revealed to the algorithm one by one, along with its incident edges. The algorithm is required to maintain a matching in the current graph, where the algorithm revises the matching after each vertex arrival by reassigning vertices. Bernstein, Holm, and Rotenberg showed that an online algorithm can maintain a matching of maximum cardinality by performing amortized $O(\log2 n)$ reassignments per arrival. In this paper, we propose to consider the general question of how requiring a non-amortized hard budget $k$ on the number of reassignments affects the algorithms' performances, under various models from the literature. We show that a simple, widely-used algorithm is a best-possible deterministic algorithm for all these models. For the unweighted maximum-cardinality problem, the algorithm is a $(1-\frac{2}{k+2})$-competitive algorithm, which is the best possible for a deterministic algorithm both under vertex arrivals and edge arrivals. Applied to the load balancing problem, this yields a bifactor online algorithm. For the weighted problem, which is traditionally studied assuming the triangle inequality, we show that the power of reassignment allows us to lift this assumption and the algorithm becomes a $\frac{1}{2}$-competitive algorithm for $k=4$, improving upon the $\frac{1}{3}$ of the previous algorithm without reassignments. We show that this also is a best-possible deterministic algorithm.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.