Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Online Graph Matching Problems with a Worst-Case Reassignment Budget (2003.05175v1)

Published 11 Mar 2020 in cs.DS

Abstract: In the online bipartite matching with reassignments problem, an algorithm is initially given only one side of the vertex set of a bipartite graph; the vertices on the other side are revealed to the algorithm one by one, along with its incident edges. The algorithm is required to maintain a matching in the current graph, where the algorithm revises the matching after each vertex arrival by reassigning vertices. Bernstein, Holm, and Rotenberg showed that an online algorithm can maintain a matching of maximum cardinality by performing amortized $O(\log2 n)$ reassignments per arrival. In this paper, we propose to consider the general question of how requiring a non-amortized hard budget $k$ on the number of reassignments affects the algorithms' performances, under various models from the literature. We show that a simple, widely-used algorithm is a best-possible deterministic algorithm for all these models. For the unweighted maximum-cardinality problem, the algorithm is a $(1-\frac{2}{k+2})$-competitive algorithm, which is the best possible for a deterministic algorithm both under vertex arrivals and edge arrivals. Applied to the load balancing problem, this yields a bifactor online algorithm. For the weighted problem, which is traditionally studied assuming the triangle inequality, we show that the power of reassignment allows us to lift this assumption and the algorithm becomes a $\frac{1}{2}$-competitive algorithm for $k=4$, improving upon the $\frac{1}{3}$ of the previous algorithm without reassignments. We show that this also is a best-possible deterministic algorithm.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube