Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Transformer++ (2003.04974v1)

Published 2 Mar 2020 in cs.CL, cs.LG, and stat.ML

Abstract: Recent advancements in attention mechanisms have replaced recurrent neural networks and its variants for machine translation tasks. Transformer using attention mechanism solely achieved state-of-the-art results in sequence modeling. Neural machine translation based on the attention mechanism is parallelizable and addresses the problem of handling long-range dependencies among words in sentences more effectively than recurrent neural networks. One of the key concepts in attention is to learn three matrices, query, key, and value, where global dependencies among words are learned through linearly projecting word embeddings through these matrices. Multiple query, key, value matrices can be learned simultaneously focusing on a different subspace of the embedded dimension, which is called multi-head in Transformer. We argue that certain dependencies among words could be learned better through an intermediate context than directly modeling word-word dependencies. This could happen due to the nature of certain dependencies or lack of patterns that lend them difficult to be modeled globally using multi-head self-attention. In this work, we propose a new way of learning dependencies through a context in multi-head using convolution. This new form of multi-head attention along with the traditional form achieves better results than Transformer on the WMT 2014 English-to-German and English-to-French translation tasks. We also introduce a framework to learn POS tagging and NER information during the training of encoder which further improves results achieving a new state-of-the-art of 32.1 BLEU, better than existing best by 1.4 BLEU, on the WMT 2014 English-to-German and 44.6 BLEU, better than existing best by 1.1 BLEU, on the WMT 2014 English-to-French translation tasks. We call this Transformer++.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.