Papers
Topics
Authors
Recent
2000 character limit reached

Addressing multiple metrics of group fairness in data-driven decision making (2003.04794v1)

Published 10 Mar 2020 in cs.LG, cs.CY, and stat.ML

Abstract: The Fairness, Accountability, and Transparency in Machine Learning (FAT-ML) literature proposes a varied set of group fairness metrics to measure discrimination against socio-demographic groups that are characterized by a protected feature, such as gender or race.Such a system can be deemed as either fair or unfair depending on the choice of the metric. Several metrics have been proposed, some of them incompatible with each other.We do so empirically, by observing that several of these metrics cluster together in two or three main clusters for the same groups and machine learning methods. In addition, we propose a robust way to visualize multidimensional fairness in two dimensions through a Principal Component Analysis (PCA) of the group fairness metrics. Experimental results on multiple datasets show that the PCA decomposition explains the variance between the metrics with one to three components.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.