Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Optimal Condition of Robust Low-rank Matrices Recovery (2003.04766v1)

Published 10 Mar 2020 in cs.IT and math.IT

Abstract: In this paper we investigate the reconstruction conditions of nuclear norm minimization for low-rank matrix recovery. We obtain sufficient conditions $\delta_{tr}<t/(4-t)$ with $0<t<4/3$ to guarantee the robust reconstruction $(z\neq0)$ or exact reconstruction $(z=0)$ of all rank $r$ matrices $X\in\mathbb{R}{m\times n}$ from $b=\mathcal{A}(X)+z$ via nuclear norm minimization. Furthermore, we not only show that when $t=1$, the upper bound of $\delta_r<1/3$ is the same as the result of Cai and Zhang \cite{Cai and Zhang}, but also demonstrate that the gained upper bounds concerning the recovery error are better. Moreover, we prove that the restricted isometry property condition is sharp. Besides, the numerical experiments are conducted to reveal the nuclear norm minimization method is stable and robust for the recovery of low-rank matrix.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.