Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Deep Blind Video Super-resolution (2003.04716v1)

Published 10 Mar 2020 in cs.CV

Abstract: Existing video super-resolution (SR) algorithms usually assume that the blur kernels in the degradation process are known and do not model the blur kernels in the restoration. However, this assumption does not hold for video SR and usually leads to over-smoothed super-resolved images. In this paper, we propose a deep convolutional neural network (CNN) model to solve video SR by a blur kernel modeling approach. The proposed deep CNN model consists of motion blur estimation, motion estimation, and latent image restoration modules. The motion blur estimation module is used to provide reliable blur kernels. With the estimated blur kernel, we develop an image deconvolution method based on the image formation model of video SR to generate intermediate latent images so that some sharp image contents can be restored well. However, the generated intermediate latent images may contain artifacts. To generate high-quality images, we use the motion estimation module to explore the information from adjacent frames, where the motion estimation can constrain the deep CNN model for better image restoration. We show that the proposed algorithm is able to generate clearer images with finer structural details. Extensive experimental results show that the proposed algorithm performs favorably against state-of-the-art methods.

Citations (43)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.