Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 116 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Indirect and Direct Training of Spiking Neural Networks for End-to-End Control of a Lane-Keeping Vehicle (2003.04603v1)

Published 10 Mar 2020 in cs.NE

Abstract: Building spiking neural networks (SNNs) based on biological synaptic plasticities holds a promising potential for accomplishing fast and energy-efficient computing, which is beneficial to mobile robotic applications. However, the implementations of SNNs in robotic fields are limited due to the lack of practical training methods. In this paper, we therefore introduce both indirect and direct end-to-end training methods of SNNs for a lane-keeping vehicle. First, we adopt a policy learned using the \textcolor{black}{Deep Q-Learning} (DQN) algorithm and then subsequently transfer it to an SNN using supervised learning. Second, we adopt the reward-modulated spike-timing-dependent plasticity (R-STDP) for training SNNs directly, since it combines the advantages of both reinforcement learning and the well-known spike-timing-dependent plasticity (STDP). We examine the proposed approaches in three scenarios in which a robot is controlled to keep within lane markings by using an event-based neuromorphic vision sensor. We further demonstrate the advantages of the R-STDP approach in terms of the lateral localization accuracy and training time steps by comparing them with other three algorithms presented in this paper.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.