Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Texture Superpixel Clustering from Patch-based Nearest Neighbor Matching (2003.04414v1)

Published 9 Mar 2020 in cs.CV

Abstract: Superpixels are widely used in computer vision applications. Nevertheless, decomposition methods may still fail to efficiently cluster image pixels according to their local texture. In this paper, we propose a new Nearest Neighbor-based Superpixel Clustering (NNSC) method to generate texture-aware superpixels in a limited computational time compared to previous approaches. We introduce a new clustering framework using patch-based nearest neighbor matching, while most existing methods are based on a pixel-wise K-means clustering. Therefore, we directly group pixels in the patch space enabling to capture texture information. We demonstrate the efficiency of our method with favorable comparison in terms of segmentation performances on both standard color and texture datasets. We also show the computational efficiency of NNSC compared to recent texture-aware superpixel methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.