Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Texture Superpixel Clustering from Patch-based Nearest Neighbor Matching (2003.04414v1)

Published 9 Mar 2020 in cs.CV

Abstract: Superpixels are widely used in computer vision applications. Nevertheless, decomposition methods may still fail to efficiently cluster image pixels according to their local texture. In this paper, we propose a new Nearest Neighbor-based Superpixel Clustering (NNSC) method to generate texture-aware superpixels in a limited computational time compared to previous approaches. We introduce a new clustering framework using patch-based nearest neighbor matching, while most existing methods are based on a pixel-wise K-means clustering. Therefore, we directly group pixels in the patch space enabling to capture texture information. We demonstrate the efficiency of our method with favorable comparison in terms of segmentation performances on both standard color and texture datasets. We also show the computational efficiency of NNSC compared to recent texture-aware superpixel methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.