Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Congestion-aware Routing and Rebalancing of Autonomous Mobility-on-Demand Systems in Mixed Traffic (2003.04335v1)

Published 9 Mar 2020 in eess.SY, cs.SY, and math.OC

Abstract: This paper studies congestion-aware route-planning policies for Autonomous Mobility-on-Demand (AMoD) systems, whereby a fleet of autonomous vehicles provides on-demand mobility under mixed traffic conditions. Specifically, we first devise a network flow model to optimize the AMoD routing and rebalancing strategies in a congestion-aware fashion by accounting for the endogenous impact of AMoD flows on travel time. Second, we capture reactive exogenous traffic consisting of private vehicles selfishly adapting to the AMoD flows in a user-centric fashion by leveraging an iterative approach. Finally, we showcase the effectiveness of our framework with two case-studies considering the transportation sub-networks in Eastern Massachusetts and New York City. Our results suggest that for high levels of demand, pure AMoD travel can be detrimental due to the additional traffic stemming from its rebalancing flows, while the combination of AMoD with walking or micromobility options can significantly improve the overall system performance.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.