Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Gradient-based adversarial attacks on categorical sequence models via traversing an embedded world (2003.04173v3)

Published 9 Mar 2020 in cs.LG and stat.ML

Abstract: Deep learning models suffer from a phenomenon called adversarial attacks: we can apply minor changes to the model input to fool a classifier for a particular example. The literature mostly considers adversarial attacks on models with images and other structured inputs. However, the adversarial attacks for categorical sequences can also be harmful. Successful attacks for inputs in the form of categorical sequences should address the following challenges: (1) non-differentiability of the target function, (2) constraints on transformations of initial sequences, and (3) diversity of possible problems. We handle these challenges using two black-box adversarial attacks. The first approach adopts a Monte-Carlo method and allows usage in any scenario, the second approach uses a continuous relaxation of models and target metrics, and thus allows usage of state-of-the-art methods for adversarial attacks with little additional effort. Results for money transactions, medical fraud, and NLP datasets suggest that proposed methods generate reasonable adversarial sequences that are close to original ones but fool machine learning models.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.