Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Sets Clustering (2003.04135v1)

Published 9 Mar 2020 in cs.LG and stat.ML

Abstract: The input to the \emph{sets-$k$-means} problem is an integer $k\geq 1$ and a set $\mathcal{P}={P_1,\cdots,P_n}$ of sets in $\mathbb{R}d$. The goal is to compute a set $C$ of $k$ centers (points) in $\mathbb{R}d$ that minimizes the sum $\sum_{P\in \mathcal{P}} \min_{p\in P, c\in C}\left| p-c \right|2$ of squared distances to these sets. An \emph{$\varepsilon$-core-set} for this problem is a weighted subset of $\mathcal{P}$ that approximates this sum up to $1\pm\varepsilon$ factor, for \emph{every} set $C$ of $k$ centers in $\mathbb{R}d$. We prove that such a core-set of $O(\log2{n})$ sets always exists, and can be computed in $O(n\log{n})$ time, for every input $\mathcal{P}$ and every fixed $d,k\geq 1$ and $\varepsilon \in (0,1)$. The result easily generalized for any metric space, distances to the power of $z>0$, and M-estimators that handle outliers. Applying an inefficient but optimal algorithm on this coreset allows us to obtain the first PTAS ($1+\varepsilon$ approximation) for the sets-$k$-means problem that takes time near linear in $n$. This is the first result even for sets-mean on the plane ($k=1$, $d=2$). Open source code and experimental results for document classification and facility locations are also provided.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.