Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving noise robust automatic speech recognition with single-channel time-domain enhancement network (2003.03998v1)

Published 9 Mar 2020 in eess.AS, cs.LG, and cs.SD

Abstract: With the advent of deep learning, research on noise-robust automatic speech recognition (ASR) has progressed rapidly. However, ASR performance in noisy conditions of single-channel systems remains unsatisfactory. Indeed, most single-channel speech enhancement (SE) methods (denoising) have brought only limited performance gains over state-of-the-art ASR back-end trained on multi-condition training data. Recently, there has been much research on neural network-based SE methods working in the time-domain showing levels of performance never attained before. However, it has not been established whether the high enhancement performance achieved by such time-domain approaches could be translated into ASR. In this paper, we show that a single-channel time-domain denoising approach can significantly improve ASR performance, providing more than 30 % relative word error reduction over a strong ASR back-end on the real evaluation data of the single-channel track of the CHiME-4 dataset. These positive results demonstrate that single-channel noise reduction can still improve ASR performance, which should open the door to more research in that direction.

Citations (90)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.