Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Complexity of tree-coloring interval graphs equitably (2003.03945v1)

Published 9 Mar 2020 in math.CO and cs.DM

Abstract: An equitable tree-$k$-coloring of a graph is a vertex $k$-coloring such that each color class induces a forest and the size of any two color classes differ by at most one. In this work, we show that every interval graph $G$ has an equitable tree-$k$-coloring for any integer $k\geq \lceil(\Delta(G)+1)/2\rceil$, solving a conjecture of Wu, Zhang and Li (2013) for interval graphs, and furthermore, give a linear-time algorithm for determining whether a proper interval graph admits an equitable tree-$k$-coloring for a given integer $k$. For disjoint union of split graphs, or $K_{1,r}$-free interval graphs with $r\geq 4$, we prove that it is $W[1]$-hard to decide whether there is an equitable tree-$k$-coloring when parameterized by number of colors, or by treewidth, number of colors and maximum degree, respectively.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.