Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Nearly Optimal Clustering Risk Bounds for Kernel K-Means (2003.03888v2)

Published 9 Mar 2020 in cs.LG and stat.ML

Abstract: In this paper, we study the statistical properties of kernel $k$-means and obtain a nearly optimal excess clustering risk bound, substantially improving the state-of-art bounds in the existing clustering risk analyses. We further analyze the statistical effect of computational approximations of the Nystr\"{o}m kernel $k$-means, and prove that it achieves the same statistical accuracy as the exact kernel $k$-means considering only $\Omega(\sqrt{nk})$ Nystr\"{o}m landmark points. To the best of our knowledge, such sharp excess clustering risk bounds for kernel (or approximate kernel) $k$-means have never been proposed before.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.