Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Low Precision Floating-point Arithmetic for High Performance FPGA-based CNN Acceleration (2003.03852v1)

Published 29 Feb 2020 in eess.SP and eess.IV

Abstract: Low precision data representation is important to reduce storage size and memory access for convolutional neural networks (CNNs). Yet, existing methods have two major limitations: (1) requiring re-training to maintain accuracy for deep CNNs, and (2) needing 16-bit floating-point or 8-bit fixed-point for a good accuracy. In this paper, we propose a low precision (8-bit) floating-point (LPFP) quantization method for FPGA-based acceleration to overcome the above limitations. Without any re-training, LPFP finds an optimal 8-bit data representation with negligible top-1/top-5 accuracy loss (within 0.5%/0.3% in our experiments, respectively, and significantly better than existing methods for deep CNNs). Furthermore, we implement one 8-bit LPFP multiplication by one 4-bit multiply-adder (MAC) and one 3-bit adder, and therefore implement four 8-bit LPFP multiplications using one DSP slice of Xilinx Kintex 7 family (KC705 in this paper) while one DSP can implement only two 8-bit fixed-point multiplications. Experiments on six typical CNNs for inference show that on average, we improve throughput by 64.5x over Intel i9 CPU and by 1.5x over existing FPGA accelerators. Particularly for VGG16 and YOLO, compared to six recent FPGA accelerators, we improve average throughput by 3.5x and 27.5x and improve average throughput per DSP by 4.1x and 5x, respectively. To the best of our knowledge, this is the first in-depth study to simplify one multiplication for CNN inference to one 4-bit MAC and implement four multiplications within one DSP while maintaining comparable accuracy without any re-training.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube