Papers
Topics
Authors
Recent
2000 character limit reached

Transferable Task Execution from Pixels through Deep Planning Domain Learning (2003.03726v1)

Published 8 Mar 2020 in cs.RO and cs.LG

Abstract: While robots can learn models to solve many manipulation tasks from raw visual input, they cannot usually use these models to solve new problems. On the other hand, symbolic planning methods such as STRIPS have long been able to solve new problems given only a domain definition and a symbolic goal, but these approaches often struggle on the real world robotic tasks due to the challenges of grounding these symbols from sensor data in a partially-observable world. We propose Deep Planning Domain Learning (DPDL), an approach that combines the strengths of both methods to learn a hierarchical model. DPDL learns a high-level model which predicts values for a large set of logical predicates consisting of the current symbolic world state, and separately learns a low-level policy which translates symbolic operators into executable actions on the robot. This allows us to perform complex, multi-step tasks even when the robot has not been explicitly trained on them. We show our method on manipulation tasks in a photorealistic kitchen scenario.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.