Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-task Learning Based Neural Bridging Reference Resolution (2003.03666v2)

Published 7 Mar 2020 in cs.CL

Abstract: We propose a multi task learning-based neural model for resolving bridging references tackling two key challenges. The first challenge is the lack of large corpora annotated with bridging references. To address this, we use multi-task learning to help bridging reference resolution with coreference resolution. We show that substantial improvements of up to 8 p.p. can be achieved on full bridging resolution with this architecture. The second challenge is the different definitions of bridging used in different corpora, meaning that hand-coded systems or systems using special features designed for one corpus do not work well with other corpora. Our neural model only uses a small number of corpus independent features, thus can be applied to different corpora. Evaluations with very different bridging corpora (ARRAU, ISNOTES, BASHI and SCICORP) suggest that our architecture works equally well on all corpora, and achieves the SoTA results on full bridging resolution for all corpora, outperforming the best reported results by up to 36.3 p.p..

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Juntao Yu (13 papers)
  2. Massimo Poesio (28 papers)
Citations (26)

Summary

We haven't generated a summary for this paper yet.