Emergent Mind

Adversarial Machine Learning: Bayesian Perspectives

(2003.03546)
Published Mar 7, 2020 in cs.AI , cs.LG , stat.CO , and stat.ML

Abstract

Adversarial Machine Learning (AML) is emerging as a major field aimed at protecting ML systems against security threats: in certain scenarios there may be adversaries that actively manipulate input data to fool learning systems. This creates a new class of security vulnerabilities that ML systems may face, and a new desirable property called adversarial robustness essential to trust operations based on ML outputs. Most work in AML is built upon a game-theoretic modelling of the conflict between a learning system and an adversary, ready to manipulate input data. This assumes that each agent knows their opponent's interests and uncertainty judgments, facilitating inferences based on Nash equilibria. However, such common knowledge assumption is not realistic in the security scenarios typical of AML. After reviewing such game-theoretic approaches, we discuss the benefits that Bayesian perspectives provide when defending ML-based systems. We demonstrate how the Bayesian approach allows us to explicitly model our uncertainty about the opponent's beliefs and interests, relaxing unrealistic assumptions, and providing more robust inferences. We illustrate this approach in supervised learning settings, and identify relevant future research problems.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.