Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Human-Centered Review of the Algorithms used within the U.S. Child Welfare System (2003.03541v1)

Published 7 Mar 2020 in cs.CY, cs.AI, and cs.HC

Abstract: The U.S. Child Welfare System (CWS) is charged with improving outcomes for foster youth; yet, they are overburdened and underfunded. To overcome this limitation, several states have turned towards algorithmic decision-making systems to reduce costs and determine better processes for improving CWS outcomes. Using a human-centered algorithmic design approach, we synthesize 50 peer-reviewed publications on computational systems used in CWS to assess how they were being developed, common characteristics of predictors used, as well as the target outcomes. We found that most of the literature has focused on risk assessment models but does not consider theoretical approaches (e.g., child-foster parent matching) nor the perspectives of caseworkers (e.g., case notes). Therefore, future algorithms should strive to be context-aware and theoretically robust by incorporating salient factors identified by past research. We provide the HCI community with research avenues for developing human-centered algorithms that redirect attention towards more equitable outcomes for CWS.

Citations (97)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.