Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Grid Cells Are Ubiquitous in Neural Networks (2003.03482v2)

Published 7 Mar 2020 in q-bio.NC and cs.NE

Abstract: Grid cells are believed to play an important role in both spatial and non-spatial cognition tasks. A recent study observed the emergence of grid cells in an LSTM for path integration. The connection between biological and artificial neural networks underlying the seemingly similarity, as well as the application domain of grid cells in deep neural networks (DNNs), expect further exploration. This work demonstrated that grid cells could be replicated in either pure vision based or vision guided path integration DNNs for navigation under a proper setting of training parameters. We also show that grid-like behaviors arise in feedforward DNNs for non-spatial tasks. Our findings support that the grid coding is an effective representation for both biological and artificial networks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.