Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Theory of Computational Resolution Limit for Line Spectral Estimation (2003.02917v2)

Published 26 Feb 2020 in cs.IT, eess.SP, and math.IT

Abstract: Line spectral estimation is a classical signal processing problem that aims to estimate the line spectra from their signal which is contaminated by deterministic or random noise. Despite a large body of research on this subject, the theoretical understanding of this problem is still elusive. In this paper, we introduce and quantitatively characterize the two resolution limits for the line spectral estimation problem under deterministic noise: one is the minimum separation distance between the line spectra that is required for exact detection of their number, and the other is the minimum separation distance between the line spectra that is required for a stable recovery of their supports. The quantitative results imply a phase transition phenomenon in each of the two recovery problems, and also the subtle difference between the two. We further propose a sweeping singular-value-thresholding algorithm for the number detection problem and conduct numerical experiments. The numerical results confirm the phase transition phenomenon in the number detection problem.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)