Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Theory of Computational Resolution Limit for Line Spectral Estimation (2003.02917v2)

Published 26 Feb 2020 in cs.IT, eess.SP, and math.IT

Abstract: Line spectral estimation is a classical signal processing problem that aims to estimate the line spectra from their signal which is contaminated by deterministic or random noise. Despite a large body of research on this subject, the theoretical understanding of this problem is still elusive. In this paper, we introduce and quantitatively characterize the two resolution limits for the line spectral estimation problem under deterministic noise: one is the minimum separation distance between the line spectra that is required for exact detection of their number, and the other is the minimum separation distance between the line spectra that is required for a stable recovery of their supports. The quantitative results imply a phase transition phenomenon in each of the two recovery problems, and also the subtle difference between the two. We further propose a sweeping singular-value-thresholding algorithm for the number detection problem and conduct numerical experiments. The numerical results confirm the phase transition phenomenon in the number detection problem.

Summary

We haven't generated a summary for this paper yet.