Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Optimizing Joint Probabilistic Caching and Channel Access for Clustered D2D Networks (2003.02676v1)

Published 3 Mar 2020 in cs.IT, eess.SP, and math.IT

Abstract: Caching at mobile devices and leveraging device-to-device (D2D) communication are two promising approaches to support massive content delivery over wireless networks. Analysis of such D2D caching networks based on a physical interference model is usually carried out by assuming uniformly distributed devices. However, this approach does not capture the notion of device clustering. In this regard, this paper proposes a joint communication and caching optimization framework for clustered D2D networks. Devices are spatially distributed into disjoint clusters and are assumed to have a surplus memory that is utilized to proactively cache files, following a random probabilistic caching scheme. The cache offloading gain is maximized by jointly optimizing channel access and caching scheme. A closed-form caching solution is obtained and bisection search method is adopted to heuristically obtain the optimal channel access probability. Results show significant improvement in the offloading gain reaching up to 10% compared to the Zipf caching baseline.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.