Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Neural network based terramechanics modeling and estimation for deformable terrains (2003.02635v1)

Published 3 Mar 2020 in eess.SP, cs.SY, and eess.SY

Abstract: In this work, a neural network based terramechanics model and terrain estimator are presented with an outlook for optimal control applications such as model predictive control. Recognizing the limitations of the state-of-the-art terramechanics models in terms of operating conditions, computational cost, and continuous differentiability for gradient-based optimization, an efficient and twice continuously differentiable terramechanics model is developed using neural networks for dynamic operations on deformable terrains. It is demonstrated that the neural network terramechanics model is able to predict the lateral tire forces accurately and efficiently compared to the Soil Contact Model as a state-of-the-art model. Furthermore, the neural network terramechanics model is implemented within a terrain estimator and it is shown that using this model the estimator converges within around 2% of the true terrain parameter. Finally, with model predictive control applications in mind, which typically rely on bicycle models for their predictions, it is demonstrated that utilizing the estimated terrain parameter can reduce prediction errors of a bicycle model by orders of magnitude. The result is an efficient, dynamic, twice continuously differentiable terramechanics model and estimator that has inherent advantages for implementation in model predictive control as compared to previously established models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube