Papers
Topics
Authors
Recent
2000 character limit reached

An Incremental Explanation of Inference in Hybrid Bayesian Networks for Increasing Model Trustworthiness and Supporting Clinical Decision Making (2003.02599v2)

Published 5 Mar 2020 in cs.AI and cs.CL

Abstract: Various AI models are increasingly being considered as part of clinical decision-support tools. However, the trustworthiness of such models is rarely considered. Clinicians are more likely to use a model if they can understand and trust its predictions. Key to this is if its underlying reasoning can be explained. A Bayesian network (BN) model has the advantage that it is not a black-box and its reasoning can be explained. In this paper, we propose an incremental explanation of inference that can be applied to hybrid BNs, i.e. those that contain both discrete and continuous nodes. The key questions that we answer are: (1) which important evidence supports or contradicts the prediction, and (2) through which intermediate variables does the information flow. The explanation is illustrated using a real clinical case study. A small evaluation study is also conducted.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.