Papers
Topics
Authors
Recent
2000 character limit reached

LAQP: Learning-based Approximate Query Processing (2003.02446v1)

Published 5 Mar 2020 in cs.DB and cs.LG

Abstract: Querying on big data is a challenging task due to the rapid growth of data amount. Approximate query processing (AQP) is a way to meet the requirement of fast response. In this paper, we propose a learning-based AQP method called the LAQP. The LAQP builds an error model learned from the historical queries to predict the sampling-based estimation error of each new query. It makes a combination of the sampling-based AQP, the pre-computed aggregations and the learned error model to provide high-accurate query estimations with a small off-line sample. The experimental results indicate that our LAQP outperforms the sampling-based AQP, the pre-aggregation-based AQP and the most recent learning-based AQP method.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.