Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Trade-offs In Quasi-Decentralized Massive MIMO (2003.01961v1)

Published 4 Mar 2020 in eess.SP, cs.IT, and math.IT

Abstract: Typical massive multiple-input multiple-output (MIMO) architectures consider a centralized approach, in which all baseband data received by each antenna has to be sent to a central processing unit (CPU) to be processed. Due to the enormous amount of antennas expected in massive MIMO base stations (BSs), the number of connections to the CPU required in centralized massive MIMO is not scalable. In recent literature decentralized approaches have been proposed to reduce the number of connections between the antennas and the CPU. However, the reduction in the connections to the CPU requires more outputs per antenna to be generated. We study the trade-off between number of connections to the CPU and number of outputs per antenna. We propose a generalized architecture that allows exploitation of this trade-off, and we define a novel matrix decomposition that allows lossless linear equalization within our proposed architecture.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.