Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Meta Cyclical Annealing Schedule: A Simple Approach to Avoiding Meta-Amortization Error (2003.01889v1)

Published 4 Mar 2020 in stat.ML and cs.LG

Abstract: The ability to learn new concepts with small amounts of data is a crucial aspect of intelligence that has proven challenging for deep learning methods. Meta-learning for few-shot learning offers a potential solution to this problem: by learning to learn across data from many previous tasks, few-shot learning algorithms can discover the structure among tasks to enable fast learning of new tasks. However, a critical challenge in few-shot learning is task ambiguity: even when a powerful prior can be meta-learned from a large number of prior tasks, a small dataset for a new task can simply be very ambiguous to acquire a single model for that task. The Bayesian meta-learning models can naturally resolve this problem by putting a sophisticated prior distribution and let the posterior well regularized through Bayesian decision theory. However, currently known Bayesian meta-learning procedures such as VERSA suffer from the so-called {\it information preference problem}, that is, the posterior distribution is degenerated to one point and is far from the exact one. To address this challenge, we design a novel meta-regularization objective using {\it cyclical annealing schedule} and {\it maximum mean discrepancy} (MMD) criterion. The cyclical annealing schedule is quite effective at avoiding such degenerate solutions. This procedure includes a difficult KL-divergence estimation, but we resolve the issue by employing MMD instead of KL-divergence. The experimental results show that our approach substantially outperforms standard meta-learning algorithms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.