Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Optimal Contextual Pricing and Extensions (2003.01703v3)

Published 3 Mar 2020 in cs.DS and cs.LG

Abstract: In the contextual pricing problem a seller repeatedly obtains products described by an adversarially chosen feature vector in $\mathbb{R}d$ and only observes the purchasing decisions of a buyer with a fixed but unknown linear valuation over the products. The regret measures the difference between the revenue the seller could have obtained knowing the buyer valuation and what can be obtained by the learning algorithm. We give a poly-time algorithm for contextual pricing with $O(d \log \log T + d \log d)$ regret which matches the $\Omega(d \log \log T)$ lower bound up to the $d \log d$ additive factor. If we replace pricing loss by the symmetric loss, we obtain an algorithm with nearly optimal regret of $O(d \log d)$ matching the $\Omega(d)$ lower bound up to $\log d$. These algorithms are based on a novel technique of bounding the value of the Steiner polynomial of a convex region at various scales. The Steiner polynomial is a degree $d$ polynomial with intrinsic volumes as the coefficients. We also study a generalized version of contextual search where the hidden linear function over the Euclidean space is replaced by a hidden function $f : \mathcal{X} \rightarrow \mathcal{Y}$ in a certain hypothesis class $\mathcal{H}$. We provide a generic algorithm with $O(d2)$ regret where $d$ is the covering dimension of this class. This leads in particular to a $\tilde{O}(s2)$ regret algorithm for linear contextual search if the linear function is guaranteed to be $s$-sparse. Finally we also extend our results to the noisy feedback model, where each round our feedback is flipped with a fixed probability $p < 1/2$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.