Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Batch Normalization Provably Avoids Rank Collapse for Randomly Initialised Deep Networks (2003.01652v3)

Published 3 Mar 2020 in stat.ML and cs.LG

Abstract: Randomly initialized neural networks are known to become harder to train with increasing depth, unless architectural enhancements like residual connections and batch normalization are used. We here investigate this phenomenon by revisiting the connection between random initialization in deep networks and spectral instabilities in products of random matrices. Given the rich literature on random matrices, it is not surprising to find that the rank of the intermediate representations in unnormalized networks collapses quickly with depth. In this work we highlight the fact that batch normalization is an effective strategy to avoid rank collapse for both linear and ReLU networks. Leveraging tools from Markov chain theory, we derive a meaningful lower rank bound in deep linear networks. Empirically, we also demonstrate that this rank robustness generalizes to ReLU nets. Finally, we conduct an extensive set of experiments on real-world data sets, which confirm that rank stability is indeed a crucial condition for training modern-day deep neural architectures.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.