Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deep Multi-Modal Sets (2003.01607v1)

Published 3 Mar 2020 in cs.CV

Abstract: Many vision-related tasks benefit from reasoning over multiple modalities to leverage complementary views of data in an attempt to learn robust embedding spaces. Most deep learning-based methods rely on a late fusion technique whereby multiple feature types are encoded and concatenated and then a multi layer perceptron (MLP) combines the fused embedding to make predictions. This has several limitations, such as an unnatural enforcement that all features be present at all times as well as constraining only a constant number of occurrences of a feature modality at any given time. Furthermore, as more modalities are added, the concatenated embedding grows. To mitigate this, we propose Deep Multi-Modal Sets: a technique that represents a collection of features as an unordered set rather than one long ever-growing fixed-size vector. The set is constructed so that we have invariance both to permutations of the feature modalities as well as to the cardinality of the set. We will also show that with particular choices in our model architecture, we can yield interpretable feature performance such that during inference time we can observe which modalities are most contributing to the prediction.With this in mind, we demonstrate a scalable, multi-modal framework that reasons over different modalities to learn various types of tasks. We demonstrate new state-of-the-art performance on two multi-modal datasets (Ads-Parallelity [34] and MM-IMDb [1]).

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.