Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fully Convolutional Networks for Automatically Generating Image Masks to Train Mask R-CNN (2003.01383v2)

Published 3 Mar 2020 in cs.CV and cs.LG

Abstract: This paper proposes a novel automatically generating image masks method for the state-of-the-art Mask R-CNN deep learning method. The Mask R-CNN method achieves the best results in object detection until now, however, it is very time-consuming and laborious to get the object Masks for training, the proposed method is composed by a two-stage design, to automatically generating image masks, the first stage implements a fully convolutional networks (FCN) based segmentation network, the second stage network, a Mask R-CNN based object detection network, which is trained on the object image masks from FCN output, the original input image, and additional label information. Through experimentation, our proposed method can obtain the image masks automatically to train Mask R-CNN, and it can achieve very high classification accuracy with an over 90% mean of average precision (mAP) for segmentation

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.