Papers
Topics
Authors
Recent
2000 character limit reached

Exactly Computing the Local Lipschitz Constant of ReLU Networks (2003.01219v2)

Published 2 Mar 2020 in stat.ML and cs.LG

Abstract: The local Lipschitz constant of a neural network is a useful metric with applications in robustness, generalization, and fairness evaluation. We provide novel analytic results relating the local Lipschitz constant of nonsmooth vector-valued functions to a maximization over the norm of the generalized Jacobian. We present a sufficient condition for which backpropagation always returns an element of the generalized Jacobian, and reframe the problem over this broad class of functions. We show strong inapproximability results for estimating Lipschitz constants of ReLU networks, and then formulate an algorithm to compute these quantities exactly. We leverage this algorithm to evaluate the tightness of competing Lipschitz estimators and the effects of regularized training on the Lipschitz constant.

Citations (104)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.