Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Assessing Software Defection Prediction Performance: Why Using the Matthews Correlation Coefficient Matters (2003.01182v1)

Published 2 Mar 2020 in cs.SE

Abstract: Context: There is considerable diversity in the range and design of computational experiments to assess classifiers for software defect prediction. This is particularly so, regarding the choice of classifier performance metrics. Unfortunately some widely used metrics are known to be biased, in particular F1. Objective: We want to understand the extent to which the widespread use of the F1 renders empirical results in software defect prediction unreliable. Method: We searched for defect prediction studies that report both F1 and the Matthews correlation coefficient (MCC). This enabled us to determine the proportion of results that are consistent between both metrics and the proportion that change. Results: Our systematic review identifies 8 studies comprising 4017 pairwise results. Of these results, the direction of the comparison changes in 23% of the cases when the unbiased MCC metric is employed. Conclusion: We find compelling reasons why the choice of classification performance metric matters, specifically the biased and misleading F1 metric should be deprecated.

Citations (84)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.