Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Efficient algorithms for the Potts model on small-set expanders (2003.01154v2)

Published 2 Mar 2020 in cs.DS, cs.DM, and math.CO

Abstract: An emerging trend in approximate counting is to show that certain low-temperature' problems are easy on typical instances, despite worst-case hardness results. For the class of regular graphs one usually shows that expansion can be exploited algorithmically, and since random regular graphs are good expanders with high probability the problem is typically tractable. Inspired by approaches used in subexponential-time algorithms for Unique Games, we develop an approximation algorithm for the partition function of the ferromagnetic Potts model on graphs with a small-set expansion condition. In such graphs it may not suffice to explore the state space of the model close to ground states, and a novel feature of our method is to efficiently find a larger set ofpseudo-ground states' such that it is enough to explore the model around each pseudo-ground state.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.