Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Multi-view Perspective of Self-supervised Learning (2003.00877v2)

Published 22 Feb 2020 in cs.CV, cs.LG, and stat.ML

Abstract: As a newly emerging unsupervised learning paradigm, self-supervised learning (SSL) recently gained widespread attention, which usually introduces a pretext task without manual annotation of data. With its help, SSL effectively learns the feature representation beneficial for downstream tasks. Thus the pretext task plays a key role. However, the study of its design, especially its essence currently is still open. In this paper, we borrow a multi-view perspective to decouple a class of popular pretext tasks into a combination of view data augmentation (VDA) and view label classification (VLC), where we attempt to explore the essence of such pretext task while providing some insights into its design. Specifically, a simple multi-view learning framework is specially designed (SSL-MV), which assists the feature learning of downstream tasks (original view) through the same tasks on the augmented views. SSL-MV focuses on VDA while abandons VLC, empirically uncovering that it is VDA rather than generally considered VLC that dominates the performance of such SSL. Additionally, thanks to replacing VLC with VDA tasks, SSL-MV also enables an integrated inference combining the predictions from the augmented views, further improving the performance. Experiments on several benchmark datasets demonstrate its advantages.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.