Papers
Topics
Authors
Recent
2000 character limit reached

A General Framework for Symmetric Property Estimation (2003.00844v1)

Published 2 Mar 2020 in cs.DS, cs.IT, cs.LG, math.IT, stat.CO, and stat.ML

Abstract: In this paper we provide a general framework for estimating symmetric properties of distributions from i.i.d. samples. For a broad class of symmetric properties we identify the easy region where empirical estimation works and the difficult region where more complex estimators are required. We show that by approximately computing the profile maximum likelihood (PML) distribution \cite{ADOS16} in this difficult region we obtain a symmetric property estimation framework that is sample complexity optimal for many properties in a broader parameter regime than previous universal estimation approaches based on PML. The resulting algorithms based on these pseudo PML distributions are also more practical.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.