Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MADAN: Multi-source Adversarial Domain Aggregation Network for Domain Adaptation (2003.00820v1)

Published 19 Feb 2020 in cs.CV

Abstract: Domain adaptation aims to learn a transferable model to bridge the domain shift between one labeled source domain and another sparsely labeled or unlabeled target domain. Since the labeled data may be collected from multiple sources, multi-source domain adaptation (MDA) has attracted increasing attention. Recent MDA methods do not consider the pixel-level alignment between sources and target or the misalignment across different sources. In this paper, we propose a novel MDA framework to address these challenges. Specifically, we design an end-to-end Multi-source Adversarial Domain Aggregation Network (MADAN). First, an adapted domain is generated for each source with dynamic semantic consistency while aligning towards the target at the pixel-level cycle-consistently. Second, sub-domain aggregation discriminator and cross-domain cycle discriminator are proposed to make different adapted domains more closely aggregated. Finally, feature-level alignment is performed between the aggregated domain and the target domain while training the task network. For the segmentation adaptation, we further enforce category-level alignment and incorporate context-aware generation, which constitutes MADAN+. We conduct extensive MDA experiments on digit recognition, object classification, and simulation-to-real semantic segmentation. The results demonstrate that the proposed MADAN and MANDA+ models outperform state-of-the-art approaches by a large margin.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.