Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Recognizing Handwritten Mathematical Expressions as LaTex Sequences Using a Multiscale Robust Neural Network (2003.00817v1)

Published 26 Feb 2020 in cs.CV and eess.IV

Abstract: In this paper, a robust multiscale neural network is proposed to recognize handwritten mathematical expressions and output LaTeX sequences, which can effectively and correctly focus on where each step of output should be concerned and has a positive effect on analyzing the two-dimensional structure of handwritten mathematical expressions and identifying different mathematical symbols in a long expression. With the addition of visualization, the model's recognition process is shown in detail. In addition, our model achieved 49.459% and 46.062% ExpRate on the public CROHME 2014 and CROHME 2016 datasets. The present model results suggest that the state-of-the-art model has better robustness, fewer errors, and higher accuracy.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.