Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards information-rich, logical text generation with knowledge-enhanced neural models (2003.00814v1)

Published 2 Mar 2020 in cs.AI

Abstract: Text generation system has made massive promising progress contributed by deep learning techniques and has been widely applied in our life. However, existing end-to-end neural models suffer from the problem of tending to generate uninformative and generic text because they cannot ground input context with background knowledge. In order to solve this problem, many researchers begin to consider combining external knowledge in text generation systems, namely knowledge-enhanced text generation. The challenges of knowledge enhanced text generation including how to select the appropriate knowledge from large-scale knowledge bases, how to read and understand extracted knowledge, and how to integrate knowledge into generation process. This survey gives a comprehensive review of knowledge-enhanced text generation systems, summarizes research progress to solving these challenges and proposes some open issues and research directions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.