Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Data-Driven Control of Unknown Systems: A Linear Programming Approach (2003.00779v2)

Published 2 Mar 2020 in eess.SY and cs.SY

Abstract: We consider the problem of discounted optimal state-feedback regulation for general unknown deterministic discrete-time systems. It is well known that open-loop instability of systems, non-quadratic cost functions and complex nonlinear dynamics, as well as the on-policy behavior of many reinforcement learning (RL) algorithms, make the design of model-free optimal adaptive controllers a challenging task. We depart from commonly used least-squares and neural network approximation methods in conventional model-free control theory, and propose a novel family of data-driven optimization algorithms based on linear programming, off-policy Q-learning and randomized experience replay. We develop both policy iteration (PI) and value iteration (VI) methods to compute an approximate optimal feedback controller with high precision and without the knowledge of a system model and stage cost function. Simulation studies confirm the effectiveness of the proposed methods.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.