Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Connected Components on a PRAM in Log Diameter Time (2003.00614v3)

Published 2 Mar 2020 in cs.DS and cs.DC

Abstract: We present an $O(\log d + \log\log_{m/n} n)$-time randomized PRAM algorithm for computing the connected components of an $n$-vertex, $m$-edge undirected graph with maximum component diameter $d$. The algorithm runs on an ARBITRARY CRCW (concurrent-read, concurrent-write with arbitrary write resolution) PRAM using $O(m)$ processors. The time bound holds with good probability. Our algorithm is based on the breakthrough results of Andoni et al. [FOCS'18] and Behnezhad et al. [FOCS'19]. Their algorithms run on the more powerful MPC model and rely on sorting and computing prefix sums in $O(1)$ time, tasks that take $\Omega(\log n / \log\log n)$ time on a CRCW PRAM with $\text{poly}(n)$ processors. Our simpler algorithm uses limited-collision hashing and does not sort or do prefix sums. It matches the time and space bounds of the algorithm of Behnezhad et al., who improved the time bound of Andoni et al. It is widely believed that the larger private memory per processor and unbounded local computation of the MPC model admit algorithms faster than that on a PRAM. Our result suggests that such additional power might not be necessary, at least for fundamental graph problems like connected components and spanning forest.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube