Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

MBGD-RDA Training and Rule Pruning for Concise TSK Fuzzy Regression Models (2003.00608v2)

Published 1 Mar 2020 in cs.LG and stat.ML

Abstract: To effectively train Takagi-Sugeno-Kang (TSK) fuzzy systems for regression problems, a Mini-Batch Gradient Descent with Regularization, DropRule, and AdaBound (MBGD-RDA) algorithm was recently proposed. It has demonstrated superior performances; however, there are also some limitations, e.g., it does not allow the user to specify the number of rules directly, and only Gaussian MFs can be used. This paper proposes two variants of MBGD-RDA to remedy these limitations, and show that they outperform the original MBGD-RDA and the classical ANFIS algorithms with the same number of rules. Furthermore, we also propose a rule pruning algorithm for TSK fuzzy systems, which can reduce the number of rules without significantly sacrificing the regression performance. Experiments showed that the rules obtained from pruning are generally better than training them from scratch directly, especially when Gaussian MFs are used.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)