Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the Area Requirements of Planar Greedy Drawings of Triconnected Planar Graphs (2003.00556v2)

Published 1 Mar 2020 in cs.CG, cs.DM, cs.DS, and math.CO

Abstract: In this paper we study the area requirements of planar greedy drawings of triconnected planar graphs. Cao, Strelzoff, and Sun exhibited a family $\cal H$ of subdivisions of triconnected plane graphs and claimed that every planar greedy drawing of the graphs in $\mathcal H$ respecting the prescribed plane embedding requires exponential area. However, we show that every $n$-vertex graph in $\cal H$ actually has a planar greedy drawing respecting the prescribed plane embedding on an $O(n)\times O(n)$ grid. This reopens the question whether triconnected planar graphs admit planar greedy drawings on a polynomial-size grid. Further, we provide evidence for a positive answer to the above question by proving that every $n$-vertex Halin graph admits a planar greedy drawing on an $O(n)\times O(n)$ grid. Both such results are obtained by actually constructing drawings that are convex and angle-monotone. Finally, we consider $\alpha$-Schnyder drawings, which are angle-monotone and hence greedy if $\alpha\leq 30\circ$, and show that there exist planar triangulations for which every $\alpha$-Schnyder drawing with a fixed $\alpha<60\circ$ requires exponential area for any resolution rule.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.