Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Why is the Mahalanobis Distance Effective for Anomaly Detection? (2003.00402v2)

Published 1 Mar 2020 in stat.ML, cs.CV, and cs.LG

Abstract: The Mahalanobis distance-based confidence score, a recently proposed anomaly detection method for pre-trained neural classifiers, achieves state-of-the-art performance on both out-of-distribution (OoD) and adversarial examples detection. This work analyzes why this method exhibits such strong performance in practical settings while imposing an implausible assumption; namely, that class conditional distributions of pre-trained features have tied covariance. Although the Mahalanobis distance-based method is claimed to be motivated by classification prediction confidence, we find that its superior performance stems from information not useful for classification. This suggests that the reason the Mahalanobis confidence score works so well is mistaken, and makes use of different information from ODIN, another popular OoD detection method based on prediction confidence. This perspective motivates us to combine these two methods, and the combined detector exhibits improved performance and robustness. These findings provide insight into the behavior of neural classifiers in response to anomalous inputs.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.