Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Why is the Mahalanobis Distance Effective for Anomaly Detection? (2003.00402v2)

Published 1 Mar 2020 in stat.ML, cs.CV, and cs.LG

Abstract: The Mahalanobis distance-based confidence score, a recently proposed anomaly detection method for pre-trained neural classifiers, achieves state-of-the-art performance on both out-of-distribution (OoD) and adversarial examples detection. This work analyzes why this method exhibits such strong performance in practical settings while imposing an implausible assumption; namely, that class conditional distributions of pre-trained features have tied covariance. Although the Mahalanobis distance-based method is claimed to be motivated by classification prediction confidence, we find that its superior performance stems from information not useful for classification. This suggests that the reason the Mahalanobis confidence score works so well is mistaken, and makes use of different information from ODIN, another popular OoD detection method based on prediction confidence. This perspective motivates us to combine these two methods, and the combined detector exhibits improved performance and robustness. These findings provide insight into the behavior of neural classifiers in response to anomalous inputs.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)