Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Globally Convergent Newton Method for Polynomials (2003.00372v1)

Published 1 Mar 2020 in math.NA and cs.NA

Abstract: Newton's method for polynomial root finding is one of mathematics' most well-known algorithms. The method also has its shortcomings: it is undefined at critical points, it could exhibit chaotic behavior and is only guaranteed to converge locally. Based on the {\it Geometric Modulus Principle} for a complex polynomial $p(z)$, together with a {\it Modulus Reduction Theorem} proved here, we develop the {\it Robust Newton's method} (RNM), defined everywhere with a step-size that guarantees an {\it a priori} reduction in polynomial modulus in each iteration. Furthermore, we prove RNM iterates converge globally, either to a root or a critical point. Specifically, given $\varepsilon $ and any seed $z_0$, in $t=O(1/\varepsilon{2})$ iterations of RNM, independent of degree of $p(z)$, either $|p(z_t)| \leq \varepsilon$ or $|p(z_t) p'(z_t)| \leq \varepsilon$. By adjusting the iterates at {\it near-critical points}, we describe a {\it modified} RNM that necessarily convergence to a root. In combination with Smale's point estimation, RNM results in a globally convergent Newton's method having a locally quadratic rate. We present sample polynomiographs that demonstrate how in contrast with Newton's method RNM smooths out the fractal boundaries of basins of attraction of roots. RNM also finds potentials in computing all roots of arbitrary degree polynomials. A particular consequence of RNM is a simple algorithm for solving cubic equations.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)